

Assessing Prehospital Cervical Spine Care with a Protocol including Lanyards rather than Routine Use of Rigid Immobilisation Collars

James Wilkins
Southern DHB

Assessing Prehospital Cervical Spine Care with a Protocol including Lanyards Rather than Routine Use of Rigid Immobilisation Collars

Wilkins, J. Dunedin Public Hospital. Dunedin. New Zealand, Yoon, H. Middlemore Hospital. Auckland. New Zealand, MacCormick, A. Senior Lecturer/Upper GI and Bariatric Surgeon, University of Auckland/Counties Manukau District Health Board; Adjunct Clinical Associate Professor, School of Public Health and Preventive Medicine, Monash University, Dicker, B. St John Ambulance service, Auckland, New Zealand; Auckland University of Technology, Auckland, New Zealand

Cervical spine injury

- Cervical spine injury is present in 2-4% of trauma presentations
 - Spinal cord injury is present in up to 20% of these
 - 0.4-0.7% of trauma presentations
- Although rare, neurological impairment is a devastating injury

Evidence for traditional use of collars

- There is little to no evidence that the use of rigid immobilization devices of the cervical spine improve neurological outcomes
 - Introduced through protocolization (ATLS) in 1960's
 - Biomechanical studies
- Rigid cervical spine immobilization devices may cause significant harm
 - In penetrating trauma NNT is 1032 vs NNH 66²
 - In blunt trauma low likelihood of preventing neurological adverse outcomes³

Denmark National Prehospital Spinal Care Guidelines (Maschmann et al. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine (2019) 27:77)

Table 3 Summary of main recommendations, quality of evidence and strength of recommendation

Recommendation	Quality of evidence	Strength of recommendation
Adult trauma patients should not undergo spinal stabilisation with a rigid cervical collar	very low	weak
Adult trauma patients should not undergo spinal stabilisation on a hard backboard unless in case of time-critical ABCDE-unstable patients, where other spinal stabilisation measures would be more time consuming	very low	weak
Adult ABCDE-stable patients with neurologic deficit and / or osseous spinal pain on examination should undergo spinal stabilisation in a vacuum mattress	very low	weak
Adult trauma patients with isolated penetrating injury should not undergo spinal stabilisation	moderate	strong
Our triaging tool should be used in order to facilitate decision on spinal stabilisation	none	good clinical practice

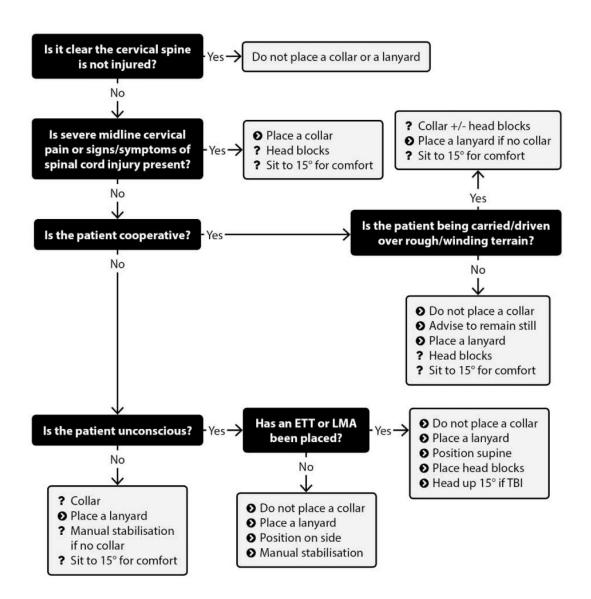
Recent international trends

Emergency Medicine Australasia (2020)

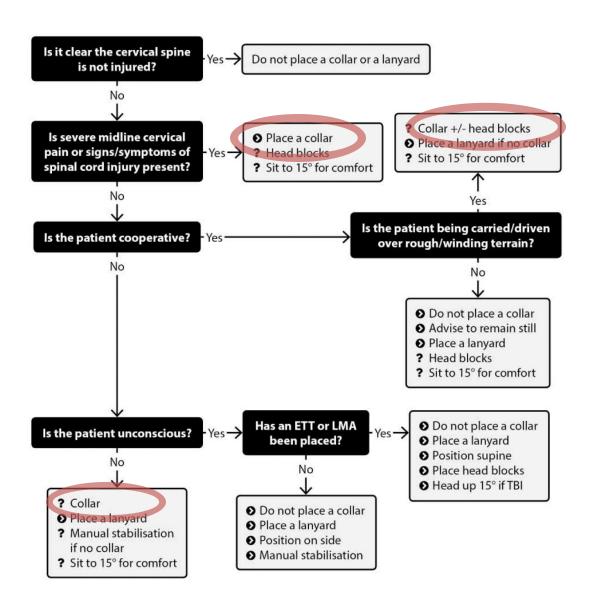
doi: 10.1111/1742-6723.13646

ORIGINAL RESEARCH

Neurologic outcomes following the introduction of a policy for using soft cervical collars in suspected traumatic cervical spine injury: A retrospective chart review

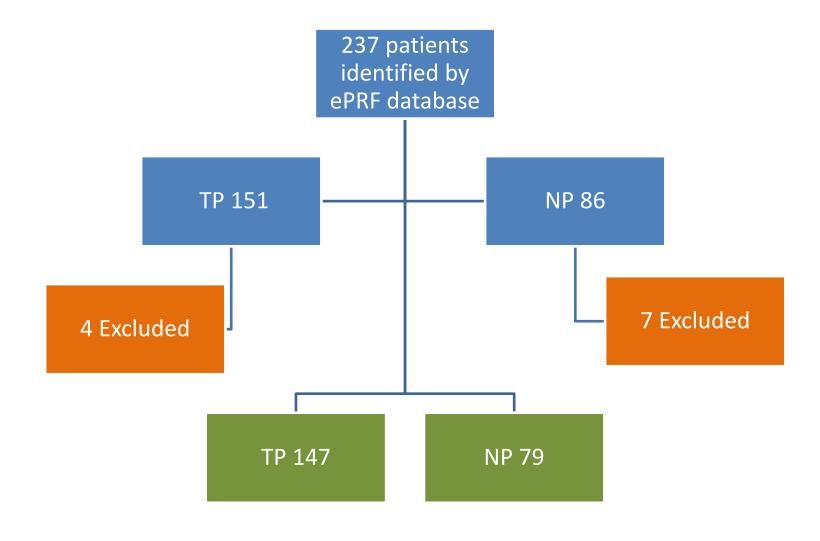

Stephen E ASHA , 1,2 Kate CURTIS, 3,4,5,6,7 Georgina HEALY, 4,7 Lauren NEUHAUS, 1 Alexander TZANNES, and Kelly WRIGHT

¹Emergency Department, St George Hospital, Sydney, New South Wales, Australia, ²St George and Sutherland Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia, ³Sydney Nursing School, The University of Sydney, Sydney, New South Wales, Australia, ⁴Emergency Services, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia, ⁵Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia, ⁶The George Institute for Global Health, Sydney, New South Wales, Australia, ⁷Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia, ⁸NSW Ambulance Aeromedical Operations, Sydney, New South Wales, Australia, and ⁹Emergency Department, The Sutherland Hospital, Sydney, New South Wales, Australia


Purpose

- 2017 St John Ambulance Service change of policy
 - Less frequent use of cervical spine collars
 - Instead uses lanyard as visual cue in some patients
- Assess for any change in outcomes with this new protocol

St John Handbook Protocol


St John Handbook Protocol

Method

- Patients transported to Middlemore hospital with trauma and either lanyard or cervical spine collar from 6 months before the introduction (Traditional protocol (TP) group), and 6 months after the introduction of the new protocol (New Protocol (NP) group)were compared.
 - Patients were identified using the St John electronic patient reporting form (ePRF) database.
 - Hospital records including patient notes and radiology reports were then used to assess the presence and severity of cervical spine injury and neurological outcomes

Inclusion and exclusion

Variables	New Protocol (N=79)	Traditional Protocol (N=147)	Total	P-values
Age: Median (IQR)	26 (18-51)	26 (19-51)	26 (19-51)	0.892**
Gender				
Female	36 (45.6%)	67 (45.6%)	103	>0.95*
Male	43 (54.4%)	79 (53.7%)	122	
Indeterminate	0 (0%)	1 (0.7%)	1	
Ethnicity	,	,		
Asian	9 (12.2%)	24 (17.5%)	33	0.451
NZ Moari	22 (29.7%)	26 (19%)	48	
Pacific Island	15 (20.3%)	32 (23.4%)	47	
NZ European	22 (29.7%)	38 (27.7%)	60	
Other	6 (8.1%)	38 (27.7%) 16 (11.7%)	22	
Not Other	0 (0%)	1 (0.7%)	1	
Mechanism	0 (0%)	1 (0.7%)	1	
Assault	2 /2 50/\	10 (6.99/)	12	<0.0001*
Assaurt Chemical poisoning	2 (2.5%) 0 (0%)	10 (6.8%) 1 (0.7%)	12	<0.0001
Fall	9 (11.4%)	35 (23.8%)	44	
Hit by vehicle	5 (6.3%)	0 (0%)	5	
Machinery accidents	0 (0%)	1 (0.7%)	1	
None	33 (41.8%)	3 (2%)	36	
Other	4 (5.1%)	0 (0%)	4	
Other Fall from horse	1 (1.3%)	1 (0.7%)	2	
Other suicide	1 (1.3%)	0 (0%)	1	
RTA/RTC	13 (16.5%)	92 (62.6%)	105	
Suicide by hanging	2 (2.5%)	1 (0.7%)	3	
Tackled	0 (0%)	3 (2%)	3	
Vehicle accident	9 (11.4%)	0 (0%)	9	
Discharged destination	5 (11.4%)	0 (0%)	3	
-	0 (00/)	1 (0.99/)	1	0.202*
HDU	0 (0%)	1 (0.8%)	1	0.303*
Home ICU	39 (57.4%)	78 (58.7%)	117	
	3 (4.4%)	4 (3%)	7	
Self-discharge	0 (0%)	1 (0.8%)	1	
Starship Hospital Transfer to starship	2 (2.9%)	0 (0%)	2	
·	1 (1.5%) 23 (33.8%)	0 (0%)	1 72	
Ward	23 (33.8%)	49 (36.8%)	12	
Alcohol	50 (05 00)	445 (07 40()	474	0.04
No	59 (86.8%)	115 (87.1%)	174	0.94
Yes	9 (13.2%)	17 (12.9%)	26	
Other Injuries	2			
No	21 (30.9%)	58 (43.6%)	79	0.081
Yes * Fisher exact test else Chi-square test used to test a	47 (69.1%)	75 (56.4%)	122	

Presence of cervical spine injury by protocol

Cervical Injury diagnosed	New Protocol (N=79)	Traditional Protocol (N=147)	Total	P-values
ulagilosca	(14-73)	(14-147)	iotai	i values
None	57 (83.8%)	110 (82.7%)	167	0.657
Cu de la	7 (40 20()	40 (42 50()	25	
Stable	7 (10.3%)	18 (13.5%)	25	
Unstable	4 (5.9%)	5 (3.8%)	9	

Neurological outcomes by protocol

Neurological deficit	New Protocol (N=79)	Traditional Protocol (N=147)	Total	P-values
None	11 (100%)	21 (91.3%)	32	0.313
Para/Tetra	0 (0%)	2 (8.7%)	2	

Length of stay by protocol

Length of Stay	New Protocol (N=79)	Traditional Protocol (N=147)	Total	P-values
	, ,			
Days Median				
(IQR)	0 (0-2)	0 (0-3)	0 (0-2)	0.450**
** Kruskal-Wallis test use	ed			

Discussion

- This is the first assessment of a protocol which utilises lanyards instead of collars in many patients.
- No significant increase in adverse neurological outcome is seen but neurological deficit, fortunately, remains a rare event.
- Larger studies are needed to assess this important change in prehospital cervical spine management

References

- 1. Neurologic outcomes following the introduction of a policy for using soft cervical collars in suspected traumatic cervical spine injury: A retrospective chart review *Asha, Stephen E Curtis, Kate. Healy, Georgina* Emergency medicine Australasia, 02/2021, Volume 33, Issue 1
- 2. Haut ER, Kalish BT, Efron DT, Haider AH, Stevens KA, Kieninger AN, et al. Spine Immobilization in Penetrating Trauma: More Harm Than Good? J Trauma Inj Infect Crit Care [Internet]. 2010 [cited 2019 Apr 13];68:115–21
- 3. Hauswald M, Ong G, Tandberg D, Omal Z, Mbbs ; *Out-of-hospital Spinal Immobilization: Its Effect on Neurologic Injury*. Acad Emerg Med MAR 1998 [cited 2019 Apr 13];5:214–9.
- 4. Ivancic PC. Do cervical collars and cervicothoracic orthoses effectively stabilize the injured cervical spine? A biomechanical investigation. Spine (Phila Pa 1976)
- 5. Podolsky S, Baraff LJ, Simon RR, Hoffman JR, Larmon B, Ablon W. *Efficacy of cervical spine immobilization methods*. J Trauma. 1983;23:461–5.
- 6. McCabe JB, Nolan DJ. Comparison of the effectiveness of different cervical immobilization collars. Ann Emerg Med. 1986;15:50–3.
- 7. Pryce R, Mcdonald N. *Prehospital Spinal Immobilization: Effect of Effort on Kinematics of Voluntary Head-neck Motion Assessed using Accelerometry*. Prehosp Disaster Med [Internet]. 2016 [cited 2019 Apr 17];31:36–42.
- 8. Prehospital Use of Cervical Collars in Trauma Patients: A Critical Review *Terje Sundstrøm, Helge Asbjørnsen, Samer Habiba, Geir Arne Sunde, Knut Wester J*Neurotrauma. 2014 Mar 15; 31(6): 531–540. doi: 10.1089/neu.2013.3094 PMCID: PMC3949434