

Systematic Review of Ethnic Differences in Pre-Operative Micronutrient Deficiencies in Bariatric Patients

Megna Jeram

Counties Manukau Health

Systematic Review of Ethnic Differences in Pre-operative Micronutrient Deficiencies in Bariatric Patients

Megna Jeram

Department of General Surgery
Counties Manukau District Health Board

Introduction

- Bariatric surgery -> nutritional deficiencies
- B12, folate, iron deficiencies -> anaemia
- Vitamin D deficiency
 - Impair calcium, phosphate and bone metabolism
 - -> decreased bone mineral density
 - -> osteoporosis, osteopenia, increased risk of fracture
- Important to correct deficiencies to prevent worsening deficiency postoperatively

Introduction

- High prevalence of micronutrient deficiencies in bariatric patients pre operatively
- British Obesity and Metabolic Surgery Society
 - Recommend pre op testing of Hb, ferritin, folate, vitamin B12, vitamin

Introduction

- Ethnic differences in micronutrient deficiency in the general population
- May be a need to risk profile bariatric patients by ethnicity

Aims

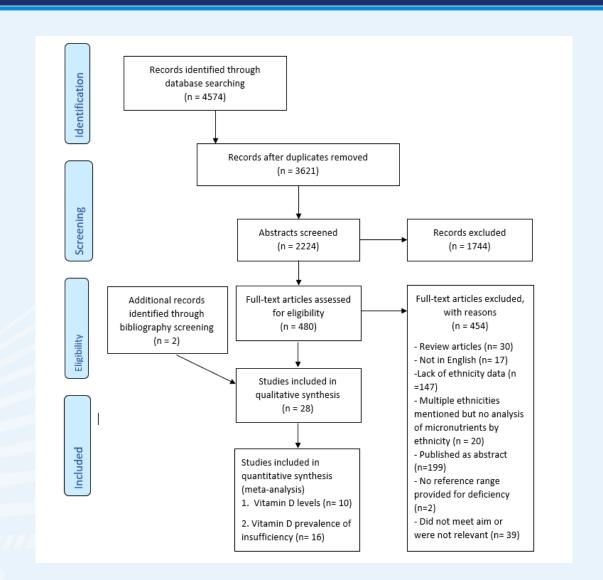
 To review the literature to determine if, in patients presenting for bariatric surgery, patients of different ethnicities have different micronutrient deficiencies preoperatively

Methods

- Systematic review PRISMA guidelines
- Inclusion criteria
 - Assessment of micronutrient levels or prevalence of deficiency in preoperative bariatric patients
 - Age > 16
 - Ethnicity data
 - Cut offs for definition of deficiency

Methods

- 2 independent reviewers
- Electronic searches
 - Medline, Embase, Cochrane Library, Pubmed
- Search strategy: keywords and MeSH terms
 - "micronutrients"
 - "bariatric surgery"
 - "preoperative"


Methods

- Statistical analyses
 - Meta analyses vitamin D
 - random effects model
- Quality Assessment
 - Newcastle-Ottawa Scale
- Heterogeneity testing
 - I squared statistic

Results – literature search

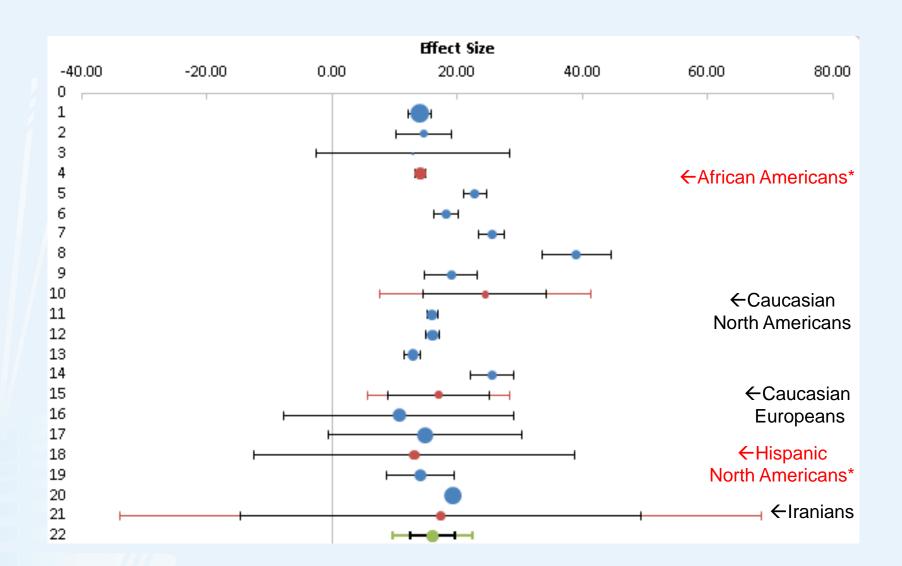
Results – overview of studies

- 7 articles multi ethnic population
- 21 articles single ethnic group
- 9 articles single micronutrient
- 19 articles multiple micronutrients
- 14 cross sectional studies, 14 cohort studies, 1 case control

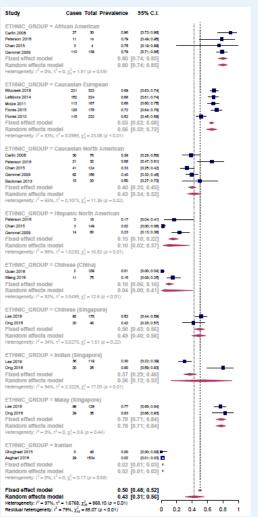
Results

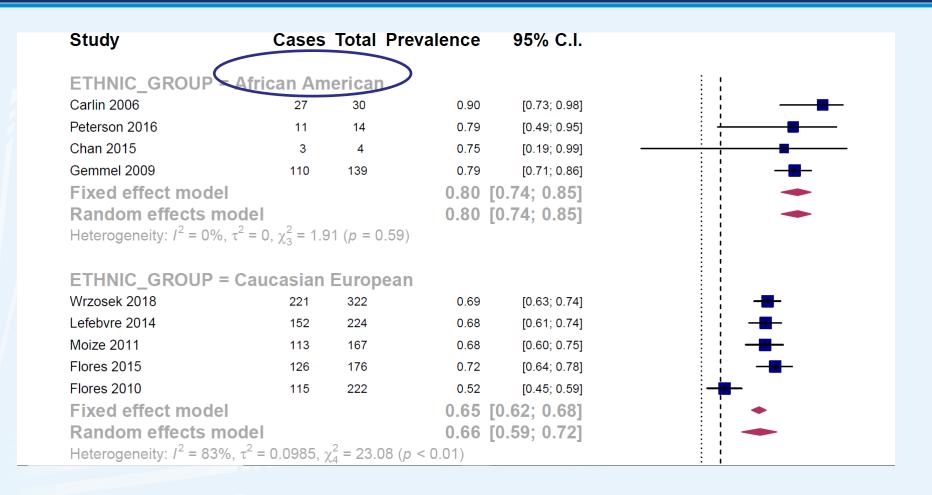
Ethnicity breakdown

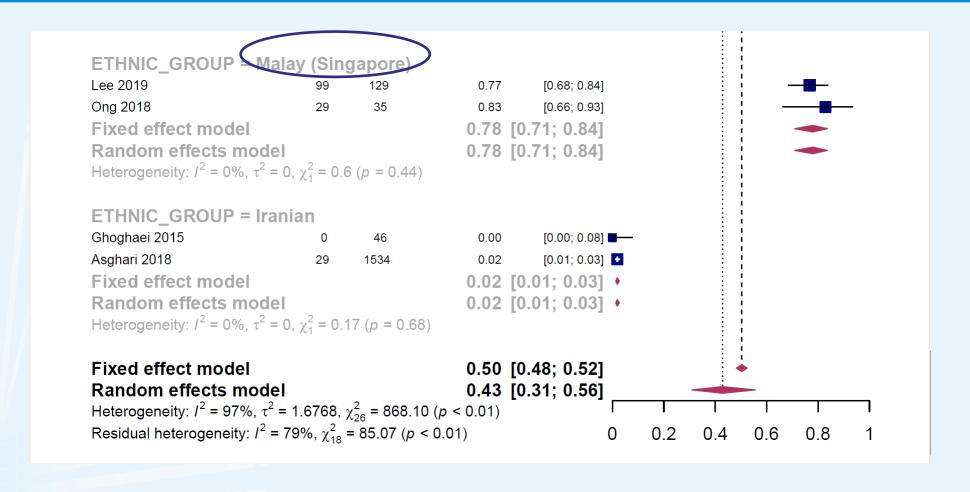
- 3977 Caucasian Europeans (12 studies)
- 2224 Iranians (3 studies)
- 1522 North American Caucasians (7 studies)
- 664 Chinese from China (3 studies)
- 282 Chinese from Singapore (2 studies)
- 252 South American Caucasians (1 study)
- 37 South American Non Caucasians (1 study)
- 202 Malays from Singapore (2 studies)
- 187 African Americans (4 studies)
- 168 Indians from Singapore (2 studies)
- 103 Chilean South Americans (1 study)
- 19 North American Hispanics (3 studies)
- 2 North American Asians (1 study)
- 1 Native American (1 study)

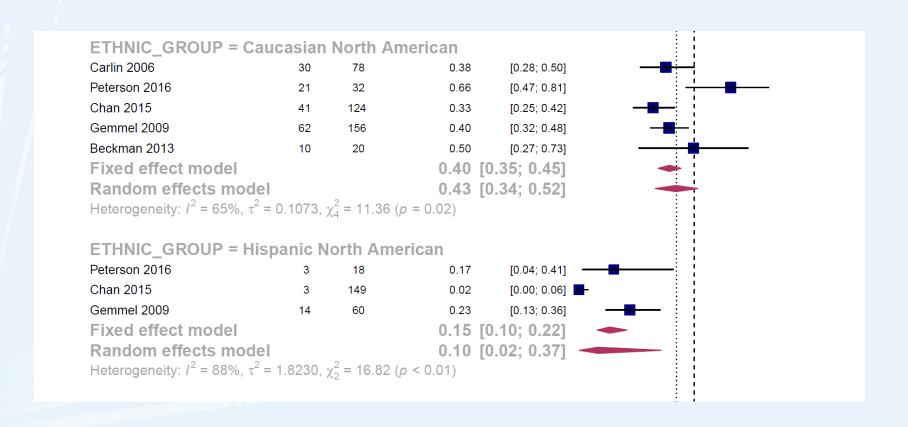

Meta-analysis of mean levels of vitamin D (ng/mL) across ethnic groups

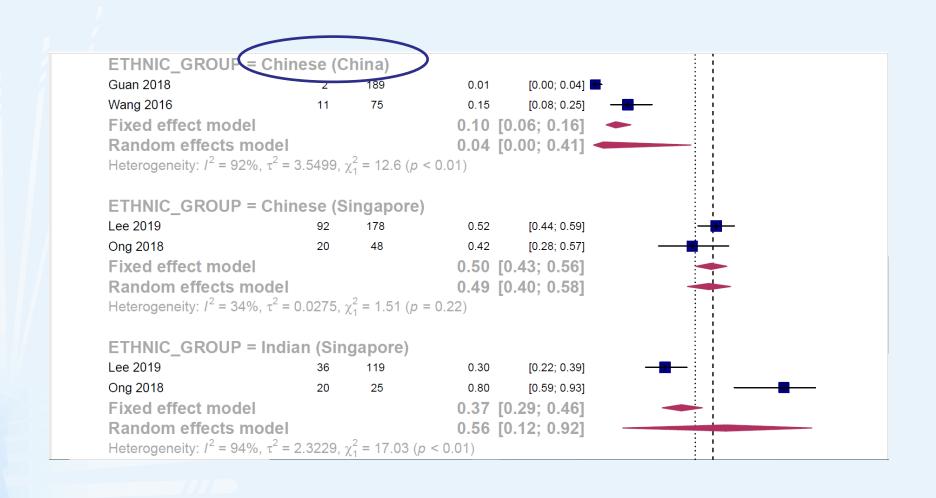

Study name / Subgroup											
name	Mean	95% Confidence Interval		Weight	Q	pQ	12	T2	T	PI LL	PI UL
1. Carlin 2006 [20]	14.000	12.139	15.861	0.815							
2. Peterson 2016 [21]	14.600	10.106	19.094	0.156							
3. Chan 2015 [22]	12.900	-2.535	28.335	0.029							
4. African American	14.062	13.164	14.960	0.343	0.129	0.938	0.000	0.000	0.000	13.164	14.960
5. Carlin 2006 [20]	22.800	20.988	24.612	0.214							
6. Peterson 2016 [21]	18.200	16.181	20.219	0.213							
7. Chan 2015 [22]	25.500	23.461	27.539	0.212							
8. Grethen 2011 [31]	39.000	33.488	44.512	0.169							
9. Beckman 2013 [32]	19.000	14.814	23.186	0.190							
10. Caucasian North											
American	24.415	14.532	34.298	0.112	66.779	0.000	0.940	24.354	4.935	7.521	41.309
11. Wrzosek 2018 [23]	16.000	15.174	16.826	0.273							
12. Flores 2015 study 1 [28]	16.030	15.023	17.037	0.270							
13. Flores 2015 study 2 [28]	12.820	11.595	14.045	0.265							
14. Guglielmi 2018 [46]	25.600	22.126	29.074	0.192							
15. Caucasian European	17.012	8.921	25.104	0.168	56.187	0.000	0.947	6.477	2.545	5.564	28.461
16. Peterson 2016 [21]	10.700	-7.672	29.072	0.413							
17. Chan 2015 [22]	14.800	-0.603	30.203	0.587							
18. Hispanic North American	13.108	-12.541	38.756	0.207	0.541	0.462	0.000	0.000	0.000	-12.541	38.756
19. Ghoghaei 2015 [26]	14.100	8.642	19.558	0.372							
20. Asghari 2018 [27]	19.300	18.653	19.947	0.628							
21. Iranian	17.365	-14.573	49.303	0.170	3.792	0.052	0.736	9.954	3.155	-33.891	68.620
					310.44						
22. Combined effect size	16.083	12.476	19.691		8	0.000	0.952	13.602	3.688	9.698	22.469


Results – vitamin D mean meta analysis









Other micronutrients

- Small number of studies
- Differences in cut offs used to define deficiency

Discussion – limitations

- Poor quality studies
- Heterogeneity of studies
- Factors impacting vitamin D
 - Latitude, temporal zones, skin colour, seasonal variation, sun exposure, supplementation

Discussion - implications

- Highest prevalence of vitamin D deficiency in African Americans
- Consider empiric treatment
 - Cost of testing
- High index of suspicion for vitamin D deficiency in patients with darker skin

Conclusions

- Vitamin D is the most commonly assessed micronutrient in pre op bariatric patients
- African Americans have a high burden of vitamin D insufficiency
- Most articles studied a Caucasian population
- Need for further assessment in bariatric patients from ethnic minority groups + multi-ethnic populations

Questions

