

- High flow nasal oxygen
- Respiratory failure
- ARDS
- Protective lung ventilation

- Inotropes
- Proning
- ECMO
- CRRT
- Weaning
- Tracheostomy

 75 year old male presented for repair of a complex large upper abdominal incisional hernia under general anaesthesia

He was otherwise well

Surgery went well

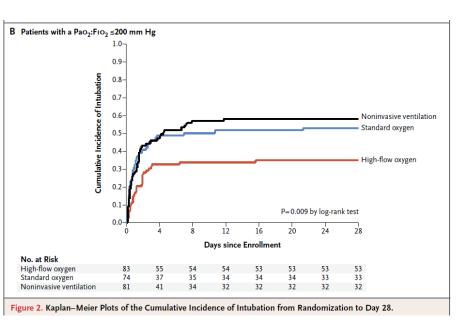
 Extubated post op with a good working thoracic epidural

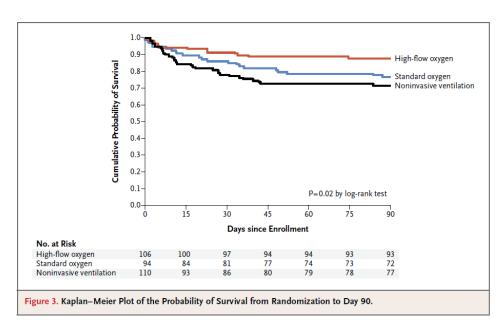
- 56 hours later he developed pyrexia, SOB, increased WCC and a climbing lactate
- Examination revealed bilateral lung crackles

- Echo was normal and CXR demonstrated signs of bilateral basal pneumonia
- A clinical diagnosis of HOSPITAL AQUIRED PNEUMONIA was made

 Blood cultures were sent and HIGH FLOW NASAL OXYGEN and Tazocin was commenced

HIGH FLOW NASAL OXYGEN


High flow nasal 02


- Flow rate up to
 60l/min PEEP 8
- % Oxygen
- Temp 37 c
- 100% humidity

ORIGINAL ARTICLE

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

Intubation rates

90 Day Mortality

Open access Research

BMJ Open Effect of high-flow nasal cannula oxygen therapy compared with conventional oxygen therapy in postoperative patients: a systematic

review and meta-analysis

Zhonghua Lu, Wei Chang, Shan-Shan Meng, Xiwen Zhang, Jianfeng Xie, Jing-Yuan Xu, Haibo Qiu, Yi Yang, Fengmei Guo

Adult surgical patients given conventional or HF02 immediately post op

Significant Lower rate escalation oxygen support

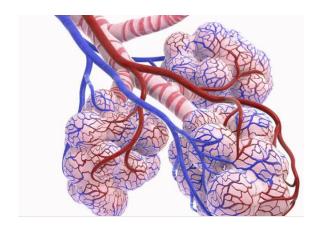
Significant Lower intubation rate

No significant difference mortality

 Over the next 24 hours the patients oxygen requirement increases, respiratory rate climbs and the patient became confused and diaphoretic

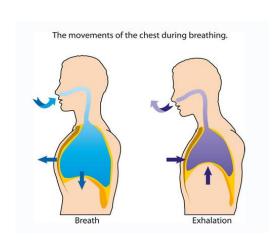
He had diffuse bilateral infiltrates on CXR

ABG


- PH 7.2
- CO2 30
- PO2 50
- Lactate 3
- BXS -8
- FiO2 100%
- Metabolic acidosis
- Increased Alveolar arterial gradient
- Type 1 Resp failure

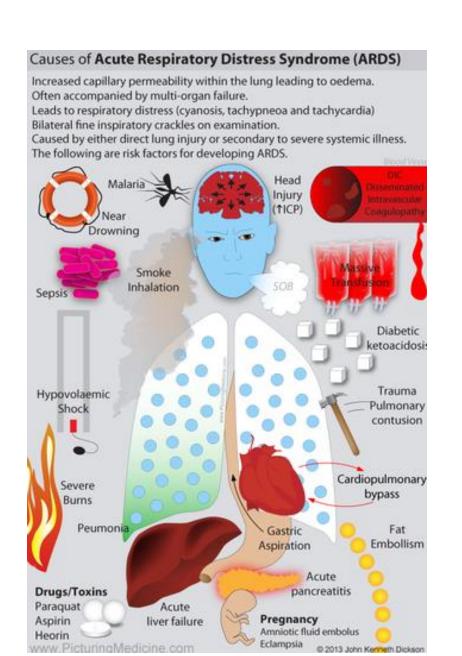
RESPIRATORY FAILURE

Respiratory failure


TYPE 1 TYPE 2

NON VENTILATORY LUNG FAILURE

Hypoxia


VENTILATORY FAILURE +/- NON VENTILATORY

Hypoxia Hypercarbia

A diagnosis of ARDS was made

ARDS

Acute Respiratory Distress Syndrome

The Berlin Definition

	ACUTE RESPIRATORY DISTRESS SYNDROME		
Timing	Within 1 week of a known clinical insult of new/worsening respiratory symptoms		
Chest Imaging ^a	Bilateral opacities – not fully explained by effusions, lobar/lung collapse, or nodules		
Origin of Edema	Respiratory failure not fully explained by cardiac failure or fluid overload; Need objective assessment (e.g., echocardiography) to exclude hydrostatic edema if no risk factor present		
	Mild	Moderate	Severe
Oxygenation ^b	$200 < PaO_2/FiO_2 \le 300$ with PEEP or CPAP $\ge 5 \text{ cmH}_2O^c$	$100 < PaO_2/FiO_2 \le 200$ with $PEEP \ge 5 cmH_2O$	$PaO_2/FiO_2 \le 100$ with $PEEP \ge 5 \text{ cmH}_2O$

^a Chest x-ray or CT scan

b If altitude higher than 1000 m, correction should be made: PaO2/FiO2 × (barometric pressure/760)

^c This may be delivered non-invasively in the Mild ARDS group

Decision was made to intubate

 Patient was ventilated with Protective lung ventilatory parameters

PROTECTIVE LUNG VENTILATION

Vent strategy

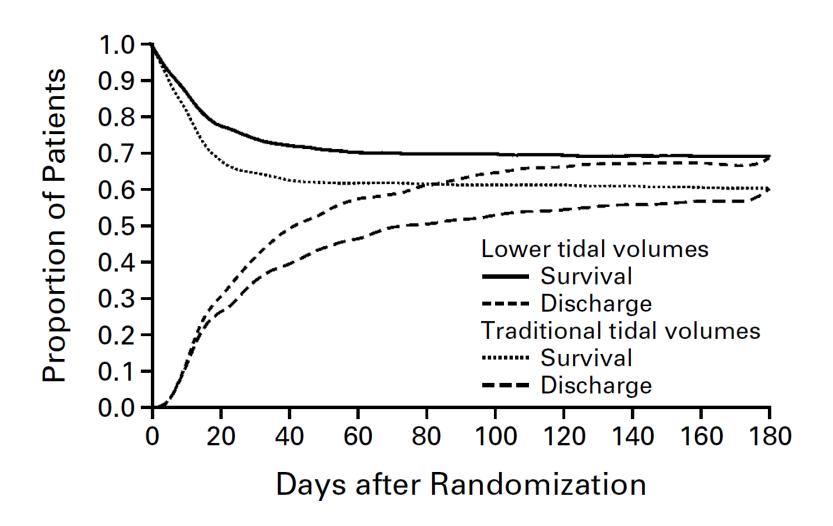
The New England Journal of Medicine

© Copyright, 2000, by the Massachusetts Medical Society

VOLUME 342 MAY 4, 2000 NUMBER 18

VENTILATION WITH LOWER TIDAL VOLUMES AS COMPARED WITH TRADITIONAL TIDAL VOLUMES FOR ACUTE LUNG INJURY AND THE ACUTE RESPIRATORY DISTRESS SYNDROME

THE ACUTE RESPIRATORY DISTRESS SYNDROME NETWORK*


ARDSNET

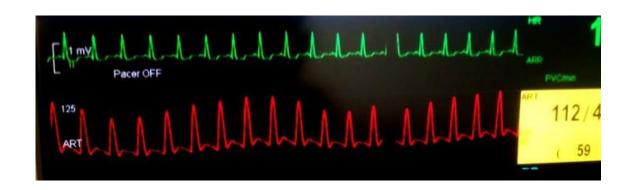
• 6ml vs 12ml

• Plateau pressure 30 vs 50

PEEP titrated to Oxygen

Standard settings

TV 6ml/kg IBW


Plateau pressure < 30

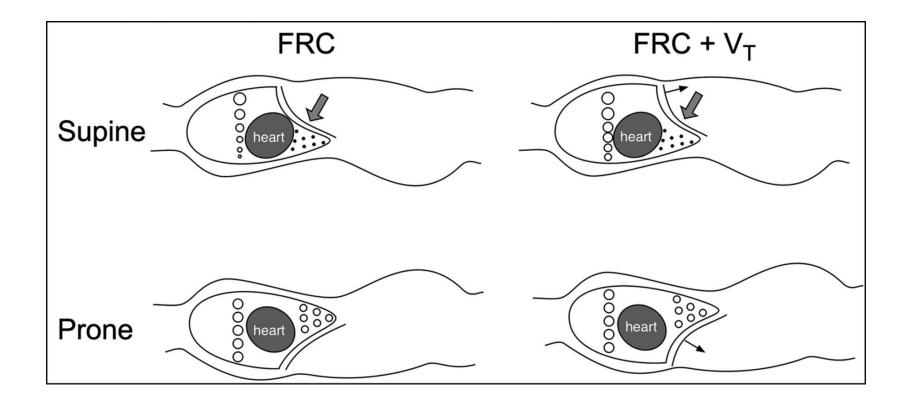
 Permissive hypercapnia pH >7.2

PEEP titrated to Fi02

 Patients BP not responding to fluid boluses so inotropes commenced

INOTROPES

- Noradrenaline Sick
- Adrenaline Sicker
- Vasopressin Really Really Sick
- Dobutamine Heart Sick
- Levosimendan Heart really sick and I want to spend some \$\$\$\$


 Over next 24 hours resp function deteriorated further (95% Oxygen / 18 PEEP)

 Consideration was given to the use of neuromuscular blockers and prone ventilation

Patient was also discussed with ECMO center.

The effect of prone posture on alveolar size at functional residual capacity (FRC) and FRC plus tidal volume (VT).

Nicholas J Johnson et al. Respir Care 2017;62:1097-1110

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 6, 2013

VOL. 368 NO. 23

Prone Positioning in Severe Acute Respiratory Distress Syndrome

Claude Guérin, M.D., Ph.D., Jean Reignier, M.D., Ph.D., Jean-Christophe Richard, M.D., Ph.D., Pascal Beuret, M.D., Arnaud Gacouin, M.D., Thierry Boulain, M.D., Emmanuelle Mercier, M.D., Michel Badet, M.D., Alain Mercat, M.D., Ph.D., Olivier Baudin, M.D., Marc Clavel, M.D., Delphine Chatellier, M.D., Samir Jaber, M.D., Ph.D., Sylvène Rosselli, M.D., Jordi Mancebo, M.D., Ph.D., Michel Sirodot, M.D., Gilles Hilbert, M.D., Ph.D., Christian Bengler, M.D., Jack Richecoeur, M.D., Marc Gainnier, M.D., Ph.D., Frédérique Bayle, M.D., Gael Bourdin, M.D., Véronique Leray, M.D., Raphaele Girard, M.D., Loredana Baboi, Ph.D., and Louis Ayzac, M.D., for the PROSEVA Study Group*

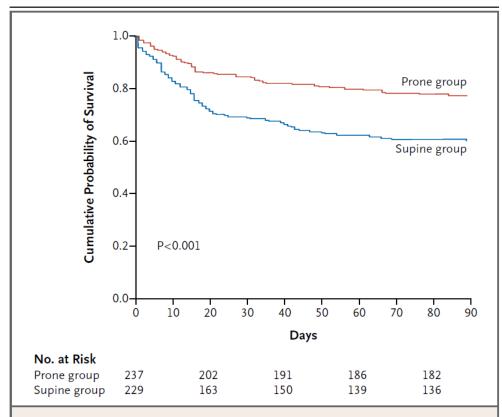
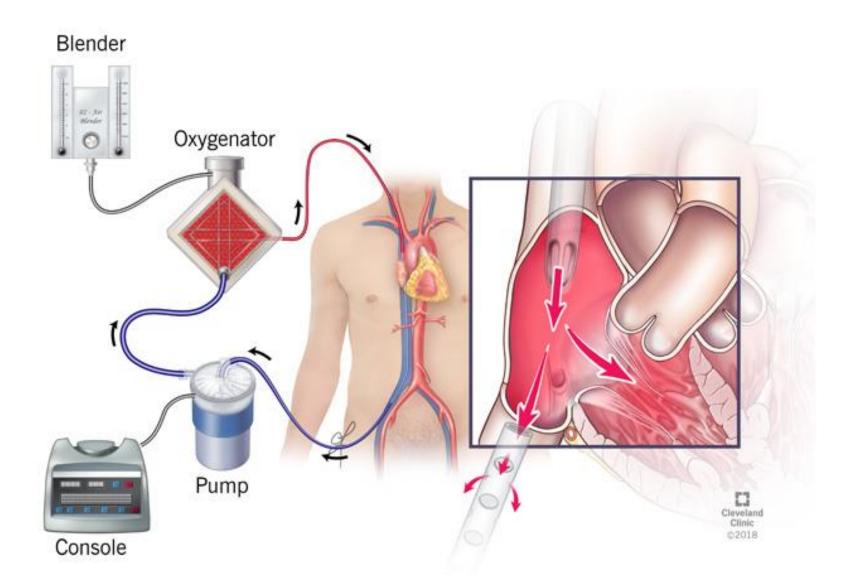



Figure 2. Kaplan-Meier Plot of the Probability of Survival from Randomization to Day 90.

PRONE CPAP

ECMO

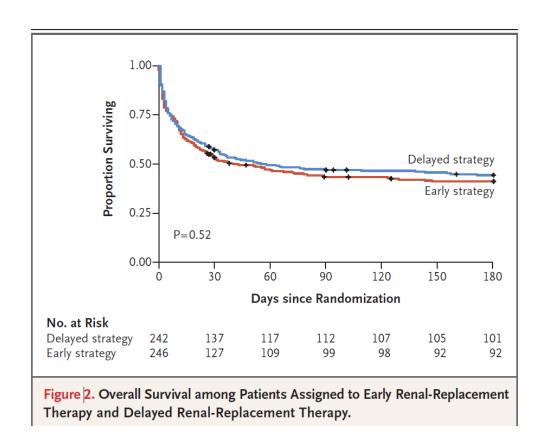
 Once Proned Fi02 fell and compliance improved

 However over the next 48 hours renal function deteriorated and a decision was made to commence CRRT

CRRT

Slow fluid and electrolyte removal

CRRT


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis

N ENGL J MED 379;15 NEJM.ORG OCTOBER 11, 2018

RRT 12 hours vs 48 hours

No significant difference mortality

In practice

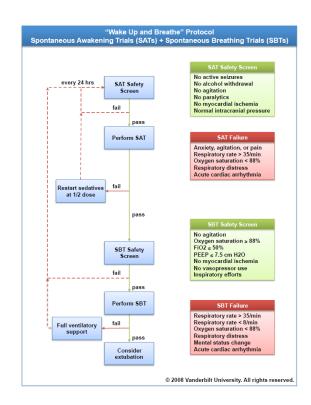
Metabolic Acidosis 7.2

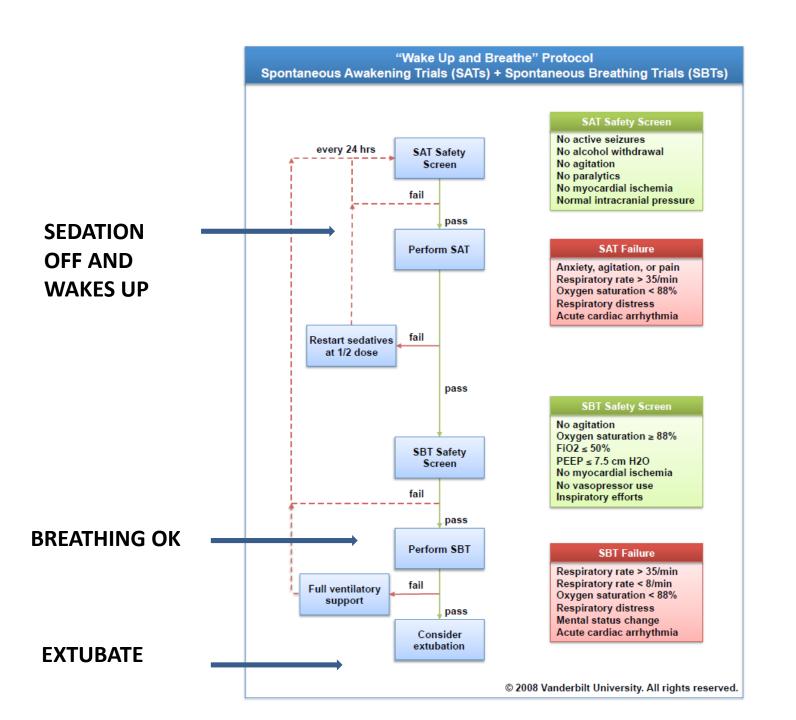
Raised Potassium 7

Raised Creatinine 600

Fluid overload litres/oedema

 Over next week the patients inotropes were weaned and his renal function and respiratory function improved


 He underwent daily spontaneous breathing trials and respiratory weaning


WEANING

Physician vs protocolized weaning

VS

 Weaning was slow and the patient received a Tracheostomy on day 14

TRACHEOSTOMY

tracheostomy

Stop sedation

Co-operation with physio

Communication

Secretion management

Early vs late Tracheostomy

Effect of Early vs Late Tracheostomy Placement on Survival in Patients Receiving Mechanical Ventilation

The TracMan Randomized Trial

Duncan Young, DM	Importance Tracheostomy is a widely used intervention in adult critical care units. There is little evidence to guide clinicians regarding the optimal timing for this procedure.
David A. Harrison, PhD	
Brian H. Cuthbertson, MD	Objective To test whether early vs late tracheostomy would be associated with lower mortality in adult patients requiring mechanical ventilation in critical care units. Design and Setting An open multicentered randomized clinical trial conducted between 2004 and 2011 involving 70 adult general and 2 cardiothoracic critical care units
Kathy Rowan, DPhil	
for the TracMan Collaborators	

- 450 patients
- Trachy with in 4 days ventilation vs after 10 days
- No difference in mortality or secondary outcomes

 Patient weaned after a further 5 days and was discharged from hospital 2 weeks later

